Enhanced Feature Extraction From Assimilated VTCI and LAI With a Particle Filter for Wheat Yield Estimation Using Cross-Wavelet Transform

نویسندگان

چکیده

To further reveal the relationships between different variables and yield at each growth stage of winter wheat, an approach for estimating regional yields wheat multiple time scales was developed by assimilating CERES-Wheat model simulations remotely sensed observations. Specifically, particle filter assimilation algorithm chosen to assimilate simulated soil moisture depth 0–20 cm leaf area index (LAI) MODIS retrieved vegetation temperature condition (VTCI) LAI. The resonance periods series assimilated VTCIs LAIs stages with crop were analyzed separately using cross-wavelet transform determine variation scales, calculated weights VTCI LAI used establish a estimation model. Both could comprehensively integrate effects sensing observations, transformed had specific yields, regardless whether they or not. Compared unassimilated variables, given greater key stages, namely jointing heading-filling milk maturity enhancing feature extraction accuracy improved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition

With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...

متن کامل

Apply Wavelet-ICA Filter for Feature Extraction

Independent component analysis (ICA) is a new effective technique for separation of statistically independent sources existing simultaneously in observations. Generally, ICA requires that the number of sensors should be no less than the number of independent sources to ensure enough information for separation of all sources. In some practical applications, this requirement of ICA is not met and...

متن کامل

Wavelet transform moments for feature extraction from temporal signals

A new feature extraction method based on five moments applied to three wavelet transform sequences has been proposed and used in classification of prehensile surface EMG patterns. The new method has essentially extended the Englehart's discrete wavelet transform and wavelet packet transform by introducing more efficient feature reduction method that also offered better generalization. The appro...

متن کامل

Facial feature extraction using complex dual-tree wavelet transform

In this paper, we propose a novel method for facial feature extraction using the directional multiresolution decomposition offered by the complex wavelet transform. The dual-tree implementation of complex wavelet transform offered by Selesnick is used (DT-DWT(S)) [I.W., Selesnick, R.G. Baraniuk, N.C. Kingsbury, The dual-tree complex wavelet transform, IEEE Signal Processing Magazine, 6, s.l., I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2023

ISSN: ['2151-1535', '1939-1404']

DOI: https://doi.org/10.1109/jstars.2023.3283240